A Continuous Probabilistic Framework for Image Matching

نویسندگان

  • Hayit Greenspan
  • Jacob Goldberger
  • Lenny Ridel
چکیده

In this paper we describe a probabilistic image matching scheme in which the im age representation is continuous and the similarity measure and distance computation are also de ned in the continuous domain Each image is rst represented as a Gaus sian mixture distribution and images are compared and matched via a probabilistic measure of similarity between distributions A common probabilistic and continuous framework is applied to the representation as well as the matching process ensuring an overall system that is theoretically appealing Matching results are investigated and the application to an image retrieval system is demonstrated

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Models for Generating, Modelling and Matching Image Categories

In this paper we present a probabilistic and continuous framework for supervised image category modelling and matching as well as unsupervised clustering of image space into image categories. A generalized GMM-KL framework is described in which each image or image-set (category) is represented as a Gaussian mixture distribution and images (categories) are compared and matched via a probabilisti...

متن کامل

A continuous and probabilistic framework for medical image representation and categorization

This work focuses on a general framework for image representation and image matching that may be appropriate for medical image archives. The proposed methodology is comprised of a continuous and probabilistic image representation scheme using Gaussian mixture modeling (GMM) along with information-theoretic image matching measures (KL). The GMM-KL framework is used for matching and categorizing ...

متن کامل

Performance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching

Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...

متن کامل

Gesture recognition using a probabilistic framework for pose matching

This paper presents an approach for view-based recognition of gestures. The approach is based on representing each gesture as a sequence of learned body poses. The gestures are recognized through a probabilistic framework for matching these body poses and for imposing temporal constrains between different poses. Matching individual poses to image data is performed using a probabilistic formulat...

متن کامل

Image Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix

In this article, a fabulous method for database retrieval is proposed.  The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2001